The Potential for a Potential Method*

Dale Rucker, Hydraulic Fracturing Workshop
March 2012

*HGI does not condone the play on words
Problem Statement

- Fluid is forced in to competent rock through a well
 - Deep
 - High pressure
 - High pumping rates
 - The rock succumbs to geomechanical failure
 - A fraction of the produced water is recovered

- Acoustic methods are used to monitor fracture growth

- However, we propose that electrical resistivity can be used to trace the movement of fracturing fluids
Resistivity measurements
Recent Advances*

- Rapid acquisition systems
- Real-time assessment
- The use of wells as electrodes
- Optimized configurations

This is not your parent’s resistivity anymore
1. Rapid Acquisition

- Full 180 channels
- Pole-pole array
- 32,220 measurement combinations in 20 minutes
- Towable
- Multi-core cables plug into side panels
- Generator or AC powered
- UL rated with safety disconnects
- Satellite communications
1. Rapid Acquisition

- Data!
 - Current output (I)
 - Voltage measurements (V)
 - Geometry
 - Time

- Example: Injection well
 - 8 days of measurements
 - 780 snapshots
 - 23K values/snapshot
1. Rapid Acquisition
1. Rapid Acquisition
2. Real-Time Assessment

- Measured through current output
- No additional processing
- Benchmarked at electrode
- Other processing: Inverse modeling (not real time)
 - Uses voltage and current data
 - Requires significant processing
 - Produces volumetric images

\[I = \frac{V}{R} \]

Output current:
\[I = \frac{V}{R_c} \]

We hold \(V \) constant

\[I = f\left(\frac{1}{R_c}\right) \]

\[R_c \downarrow \quad I \uparrow \]
2. Real-Time Assessment

Benchmarking the increase in electrical current
2. Real-Time Assessment
3. Long Electrodes

- **Two words: Well field**
 - Electrodes in place
 - Well grounded
 - At depth of injection
 - Can be TX or RX

- **Algorithms**
 - Validated though numerous examples
 - Can be combined with surface or buried electrodes

* I totally ripped these off of the internet
3. Long Electrodes

Pilot-scale Validation
3. Long Electrodes

Point Electrode Results

Long Electrode Results

3. Long Electrodes

4. Optimized Arrays

- Pole-pole array (2-pole array)
 - Advantage: fast, deep, lowest noise
 - Disadvantage: low resolving power
- 4-pole array
 - Advantage: high resolving power
 - Disadvantage: too many combinations, highest noise
- Best of 2-pole + 4-pole =
 - Awesome!
4. (non) Optimized Arrays

Data

Resistivity Inversion

Resolution

2-pole (727/756 data)

4-pole (5940/40950 data)
4. Optimized Arrays

Any 4-pole array combination can be calculated from a complete 2-pole array dataset.
4. Optimized Arrays
Final Thoughts

- New advances in resistivity
- Resistivity is cheap
- Can track the fluid movement*
- Good complement to acoustic methods

*if you want that information